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HEAT AND MASS TRANSFER DURING DRYING OF A GRANULAR 

MATERIAL MOVING ALONG A HOT CHANNEL 

V. V. Kornaraki UDC 536.24.001:66.047.75 

Heat and mass transport during drying of a compacted layer is considered, with the layer 
moving in a slot or a cylindrical channel with walls permeable to heat and water. The fol- 
lowing assumptions are made: I) the motion of the bed is stable and is of rod type; 2) the 
structure and porosity are unvarying; 3) the transport characteristics are constant; 4) the 
distributions of temperature and water content in the input section are uniform; 5) the heat 
transport due to concentration-dependent diffusion is negligible, as is that due to thermal 
diffusion; and 6) the longitudinal molecular transport of heat and matter is negligible by 
comparison with the convective transfer. The power is considered as a quasihomogeneous 
medium having effective transport coefficients. The temperature differences between the 
components are negligible. 

A boundary-layer technique is employed on the basis that effective thermal and diffu- 
sion boundary layers are set up; two stages are distinguished: in the first, the thicknesses 
of the layers increase, while in the second the thicknesses attain half the width of the 
channel. The distributions for the temperature and potentials are taken as polynomials T -- 
Ao + AIY + A2Y2; 8 = Bo + BIY + B2Y~; relationships are derived for the temperature, poten- 
tials, boundary-layer thicknesses, and stabilization lengths. A local heat-transfer coeffi- 
cient is used in evaluating the heat-transfer rate, which is referred to the temperature 
difference between the wall and the flow in a given section; then the following equations 
are derived for a slot channel: 

u [(  . . K i m , . . ]  o -s  

Stag~ I ( X < X g )  Nu=2.45 l--erxoLu__--n-, l ~ ,  ; 
K,q ] J 

Stage II (X > X~) Numla= 6 = const. 

In t h e  i n i t i a l  s e c t i o n  (X < X s s )  t h e  t e m p e r a t u r e  and p o t e n t i a l  d i s t r i b u t i o n s  s t a b i l i z e ,  
and this stabilization of the temperature tends to reduce the heat-transfer rate. The length 
of the thermal-stabilization section increases in the presence of mass transport, while the 
heat-transfer rate increases with the values for the phase-transition, Lykov, and Kossovich 
criteria, i.e. , with EKoLu(Kim/Kiq). The mass transfer has no effect in the region of sta- 
bilized heat transfer, and the values for Numi n are identical with and without mass transfer. 

Dep. 387-79, Dec. 19, 1978. 
Original article submitted June 20, 1978. 

FREE CONVECTION IN LAYERS OF POWDERED BUILDING MATERIALS 

I. Ya. Neusikhin and V. V. Pokotilov UDC 536.24 

Measurements have been made on the heat-transfer rate in free convection for horizontal 
layers of actual building materials of comparatively large grain size (d = 5-40 mm); such a 
system cannot be taken as isotropic, but instead must be considered as consisting of a middle 
layer and two boundary layers, with the latter two layers more permeable and more porous 
than the middle layer. 

The experiments were performed in the steady state. Radiative heat transfer in the bed 
was eliminated and the stability limit was attained for small temperature gradients byusing 
deaerated water. The apparatus consisted of a conductance meter, power supplies, and various 

*All-Union Institute of Scientific--Technical Information. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 6, pp. 
1979. 

1108-1125,  J u n e ,  

0022-0841/79/3606-0731507.50 �9 1979 Plenum Publishing Corporation 731 



.~-__ 77__1_u Y-_  + v _ - _ ~ l - ; T T F -  . _, _ 

;hP 1 :+ : " ..... ++ ,i--- 4-.4-. t I ..... T . . . . .  L-~-'~'-" vr~J - '  --P--'I--I 
, 

" - - 2 !  
J l | A ~ l j l l  

t " J:; '  I T 

t l  I I ~_J t ] I I J [ i [" .[ ] I I  ] z / I  t J  ' I I I 
1 0  2 3 ~ , 5  I0 z 2. 3 ~ 5  lO ~ 2 lO 2 3 # 5  tO 2 3 4 5  10 ~ R0.D0 

F i g .  1. R e l a t i o n s h i p  be tween  ~ and Ra-Da; a) ~,-- 14c; b)  ~ = ~  ; 
s o l i d  l i n e  n u m e r i c a l  s o l u t i o n s  [ 8 - 1 0 ]  ; 1) H -- 0 .019  m and 2) 
H = 0 .027  m f o r  g r i t  o f  5 -10  ~ ;  3) 0 . 0 4 6 ;  and 4) 0 .074  f o r  
g r i t  o f  10-20 mm; 5) 0 .047 ;  6) 0 .083  f o r  g r i t  o f  20-40 m~. 

measuring instruments. The conductance meter was of cylinder-piston type, which provided 
layers of various thicknesses. A flat electric heater provided the appropriate heat flux. 

The measurements were made with layers of building grit of three size ranges: 5-10, 
10-20, and 20-40 mm; values were determined for Ra. Da together with the corresponding ~. 
The bed permeability ~ appears in Da, and this in one case was taken as the pe_rmeability ~m 
of the middle layer, while in the other it was taken as the bulk permeability ~ [I]. Graphs 
of ~ = f (Ra-Da) (Fig. I) were drawn up. 

In the first case (a) the system was thus taken as isotropic, while in the second (b) 
it was taken as consisting of middle and boundary layers. Figure l shows that the results 
are of smaller spread in the second case and fit better to the theoretical relationship, 
which can be approximated by 

e - -~eq /~*  = I +0.105[(Ra.Da)--40] ~ 

These results indicate that such a bed should be considered as anisotropic at the boun- 
daries, on account of the pressure gradient due to convection, especially in a system con- 
sisting of rough particles of random shape and comparatively large size. 

LITERATURE CITED 
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QUASIREGULAR STATE IN HEAT AND MASS TRANSFER 

V. M. Kazanskii UDC 536.7:536.24 

The paper deals with the general principles of quasiregular transfer of several sub- 
stances; these principles, which have been formulated previously by the author, are here 
applied to heat transfer, alone or with mass transfer. Entropy calculation shows that the 
quasiregular state is the same as the regular state for pure heat transfer on a plate. Spe- 
cial features of the quasiregular state are considered for heat and mass transfer on a plate 
with boundary conditions of the third kind. The quasiregular principles (maximum entropy for 
constant mean values for the transport potentials) do not conflict with existing views on 
regular thermal and mass-transfer processes; instead, they constitute a generalization of the 
latter. 

Dep. 714-79, Oct. 12, 1978. 
Original article submitted Apr. 25, 1977. 

732 



EFFECT OF LIFT ON HEAT TRANSFER AND FRICTION IN 

COMBINED CONVECTION 

V. I. Dubovik UDC 536.244:532.528 

A slow flow around a permeable surface is considered, where the lift and the related 
free motion are opposite in direction to the forced flow. 

A model is used for a vertical permeable (porous) surface parallel to the unperturbed 
flow. 

Iterative fitting has been used in solving the boundary-layer equations, which have 
been transformed to ordinary differential equations subject to given laws for the distribu- 
tions of the surface temperature and speed of the unperturbed flow. Dimensionless distri- 
butions have been derived for the velocity, temperature, and heat fluxes in the boundary 
layer for various values of the parameters representing the lift and the injection (suction) 
for a Prandtl number of 0.7. The results are presented as curves for Nu/Nuo and f"(0)/f~(0) 
in relation to the injection (suction) for various values of the parameter that governs the 
effects of lift on the heat transfer and friction when the free and forced flows are opposite 
in direction. 

The velocity distribution in the boundary layer indicates that the flow becomes detached 
when the parameter characterizing the lift becomes 0.95 of that for an impermeable surface. 

Dep. 3750-78, Aug. 28, 1978. 
Original article submitted Apr. 19, 1978. 

USE OF A CONSTANT-POlaR FLAT HEATER IN DETERMINING THE 

THERMOPHYSICAL CHARACTERISTICS OF A TWO-LAYER MATERIAL 

I. Ya. Neusikhin UDC 536.2 

A method is given for determining the thermophysical characteristics of an integral two- 
layer structure in terms of the temperature variation at a heater of constant output placed 
between two identical pieces of the material If]. 

The observed T(O, ~) = f(T) relation can yield all the thermophysical characteristics of 
the layer closer to the heater (the boundary layer, denoted by subscript b) and the thermal- 
activity coefficient for the remoter main layer, which is denoted by subscript zero. 

The following form applies [2] for the solution to the heat-conduction equation for con- 
stant boundary conditions of the second kind for the surfaces in contact with the heater: 

T (0. ~) = ~ + 2 (-- h)~ iedc . (!) 

l 

Figure I shows (I) in T(0, T) and r coordinates. 

For Fo b < 0.2, the temperature variation at the heater is governed only by the thermo- 
physical characteristics of the boundary layer, as defined by (2), section o, e: 

T(O, ~) -- ~q V ~  (2)  

The thermophysical characteristics of the main layer also begin to influence the heater tem- 
perature as Fo b increases, and the result is then dependent on the Kb. If K b = l, the heater 
temperature varies along line I, which arises from the origin, while for K b = 0 (bo = =) and 
for large Fo b we have that (I) becomes 

T = T (0. ~)[r(%,~)=rr---const = qRb" (3) 

T h e  l i n e  o ,  e g r a d u a l l y  g o e s  o v e r  t o  l l n e  2 .  T h e  l i n e  o ,  e a l s o  g o e s  o v e r  g r a d u a l l y  t o  a 
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F i g .  I .  H e a t e r  t e m p e r a t u r e  v a r i a t i o n  in  
relation to thermal-activity coefficients 
of layers (b b and bo). 

straight line for intermediate values of Kb, and each of these lines is inclined to the 
axis. The form of (I) is [3] as follows for K b = ~ (b o = O) and large values of FOb: 

T(0, x) = qRb(FObq- 1]3), (4) 

w h i l e  t h e  o ,  e l i n e  becomes t h e  p a r a b o l a  3. The o,  e l i n e  goes  o v e r  t o  a cu rve  a t  p o i n t  e 
f o r  i n t e r m e d i a t e  v a l u e s  o f  K b. 

I t  i s  a l s o  shown t h a t ,  in  0 and F / ~ o  b c o o r d i n a t e s ,  a l l  t he  c u r v e s  t o  the  r i g h t  o f  the  
line in position 1 intersect the o, e curve at point D, no matter what the thermophysical 
characteristics of the materials, and this point has coordinates 0 = 1, Fo b = ~/4, while all 
the curves to the left of line ] are parabolas of variable degree (0.5 in position I, I in 
position 3), and they are tangential to the o, e curve at point e, which has coordinates 0 = 
0.645, FO b = I/7. 

These arguments allow one to use the temperature variation at the heater to solve the 
problem. Working formulas are given. 

NOTATION 

T(0, m), heater temperature; q, heat flux; z, time; h = (l --Ko)/(; + Kb); K b = b,/bo; 
b = ~c0; Fo b = abT/~; a b -- Xb/Cb0b; ~b, boundary-layer thickness; R b = ~b/Xb; 0 = T(O, 
~/T). 
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INTERNAL DIFFUSION IN ELECTROMAGNETIC FIELDS 

G. A. Vitkov, T. N. Zabelina, 
and T. M. Reier 

UDC 532.546:532.72:538.4 

Measurements are reported on the formation of solid films in droplets of viscose, and 
also the formation of viscose fibers in baths acted on by electric and magnetic fields. The 
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Fig. I. Characteristic forms of droplet at various times 
t (sec): ]) 0; 2) 120; 3) 240; 4) 360; 5) 480; a) in an 
electric field of E = 5.8.]02 V/m at a precipitant concen- 
tration C(H2SO~) = 75 g/liter; b) in an electromagnetic 
field having E = 3.48-102 V/m, H = 8.105 A/m, and the same 
concentration; I) cellulose hydrate layer; II) viscose; 
III) xanthogenate layer. 

laboratory system consisted of a flat cell containing two electrodes, a temperature-control 
system, and an electrode power supply. Measurements were made on the boundaries of the reac- 
tion zones in the drop at various times after the start. Parts a and b of Fig. I show char- 
acteristic drop shapes at various times in an electric field (a) and in the presence of elec- 
tromagnetic forces (b). 

The results are as follows: 

I. An electric field accelerates the precipitation of cellulose xanthogenate by ion 
transport in the viscose--bath system. 

2. The processes in the magnetic field are generally as under ordinary conditions, but 
the rates are somewhat higher. 

3. The precipitation of cellulose xanthogenate and the decomposition to cellulose hy- 
drate are both accelerated in the presence of electromagnetic forces. 

Measurements are reported on the acceleration of the formation of viscose fibers in 
electromagnetic fields, and it is shown that these fields can be used to accelerate the pro- 
cesses in the presence of reactions giving rise to capillary structures in cellulose hydrate 
fibers. 

Dep. 154-79, Oct. 4, ]978. 
Original article submitted July 25, 1977. 
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OPERATING PRINCIPLES AND APPLICATIONS OF 

EQUIPMENT WITH GAS-CONDENSATION COOLING 

F. M. Chernomurov UDC 536.584 

Means of efficient replacement of water by gas (e.g., air) for cooling surfaces are 
considered, particularly for use in areas where the freshwater supply is restricted or en- 
vironmental contamination must be avoided. 

It is shown that heat-pipe techniques are of considerable value here []]. 

The principle has been implemented in equipment with gas-condensation cooling, in which 
there is an isothermal distribution of the heat flux over a large surface, which is subse- 
quently cooled by a gas. 

The gas-cooled surface (condenser bank) is (Fig. I) either within a sealed hollow 
vessel (a or d) or outside the latter (b, c, e). The vapor and condensate travel either 
along a common channel (a) or along separate channels (in the other cases), in accordance 
with the configuration of the condenser and the sealed chamber, while the separate channels 
may be outside the sealed vessel (b and c). The cooling gas passes within the pipes in the 
condenser section (b, d, and e). In some cases, it is desirable for the pipes in the con- 
denser to have forced motion for the vapor, with the cooling gas circulating in the space 
between the tubes (c). If the condensation surface is extensive and appropriately finned, 
comparatively high heat flux densities can be handled by natural convection, i.e., forced 
circulation of the cooling gas is not necessary. 

A description is given of the laboratory system, of the methods used in the experi- 
ments, and of some results obtained during measurements on the variations in heat-flux den- 
sity in the heating zone, along with the required flow of cooling gas (air). 

Results are given on the use of water as the intermediate heat carrier for a horizontal 

I o o ~ o o I ] I I l JLitll1111~rlll ~ 

ioo~ I 1 3 q llllllllllll]l  
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a I I I I  b C 
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Fig. | .  Styles of equipment with gas-condensation cooling 
(arrows show heat supply zone and directions of movement 
of vapor and condensate); a, b, and c) cooling planes or 
cylindrical vertical surfaces; d, e) spherical or horizon- 
tal cylindrical cooling surfaces; |) sealed body; 2) inter- 
mediate heat carrier; 3) condenser bank; 4) channel for 
vapor and condensate; 5) inserts. 
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planar cooled surface; the system has been found to be highly stable and reliable. Also, 
there is a very much reduced probability of contaminating the air with harmful pollutants, 
as well as a ]:eduction in the demand for fresh water, while it is comparatively easy to 
utilize the waste heat. 

It is concluded that this system should be widely used in industrial plants in arid 
areas or anywhere lacking plentiful fresh water. 

LITERATURE CITED 
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CALCULATION OF THE WATER CONTENT OF SATURATED 

COMPRESSED AIR 

V. M. Braun UDC 533. 275.001 . 24 

The water content of air can be calculated from Dalton's law only if the pressure of 
the vapor--air mixture is comparatively low, in which case each component can be considered 
as an ideal gas. 

No analytical formulas are available for the water content of air at high pressures, so 
computers cannot be employed, and in that case one normally uses a nomogram [I] constructed 
from the measurements of [2]. 

The water content of saturated compressed air is given by 

Ps [I + C(p--ps)l,kg/kg d d~ a k .  ( l )  ds = 0.6221 P __ p'~----~ 

The value of C may be calculated from the data of [2] or approximated by the polynomial 

C = a o + a , - - ~ + a t  + a s  ~ �9 (2 )  

The working range for the measurements is --35~ ~t~~ P~20 MPa (200 kgf/cm:). 

The vapor pressure of water in the range •176 is 

P , = e x p  b o + - ~ - + b 2 1 n T + b ~ T + b 4 T  ~ MPa. (3 )  

E q u a t i o n s  ( 1 ) - ( 3 )  f i t  t h e  i n p u t  e x p e r i m e n t a l  d a t a  w i t h  a mean d e v i a t i o n  i n  w a t e r  c o n t e n t  
o f  2.1%. 

NOTATION 

ds, mass water content; P, total pressure of vapor-gas mixture; Ps, partial pressure of 
water vapor in saturated air; T, absolute temperature. 

TABLE ! .  

T<  273 "K 

T>273~  

Tabulated Coefficients of (2) and (3) 

Coeff. - -  0 

7,9237 
--24,48667 

2,5944 
63,53019 

--8, 2447 
---5631,1202 

--2,2516 
--7235, 4242 

Subscript 
2 3 I 4 

--0,34124 [ 
2,8951 -'-0'038614481 2,774937X I0 -6 8,2312 

0.65806 ---0,064071 [ - -  
- -8 ,2  0,0057113 ] 0 
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COOLING OF A HEAT BRIDGE BY HELIUM VAPOR IN THE 

PRESENCE OF LOCALIZED HEAT SOURCES 

B. V. Eliseev, Yu. P. Mordvinov, 
and I. V. Ufatov 

UDC 621 . 396.6-181.48.017.7 

The thin-fin approximation is used in determining the temperature distribution in each 
of two helium-cooled parts of a thermal bridge placed one behind the other, where heat is 
provided at the start of the second part. Differential equations are written for the temper- 
ature of the bridge material and of the helium on the basis of heat transfer by laminar or 
turbulent flow. The temperature of the helium is given along with the temperature of the 
bridge material (IKhlSNIOT steel) at the start of the first part, as well as the temperature 
of the material at the end of the second part; the temperature is continuous at the junction 
between the parts, while the derivatives with respect to the coordinate differ by an amount 
q/%. The equations have been solved by computer. The temperature distribution over the 
length of the bridge is determined along with the heat fluxes at the cold and warm ends for 
various helium flow rates and for various heat fluxes at the junction between the two parts, 
as well as for various geometrical parameters of the bridge. 

Figure ] shows the heat flux at the cold end of the bridge as a function of the addi- 
tional heat flux at the junction; as the flux decreases (and cooling sets in), there is a 
limit to the value of q for which ~oT'lo = 0. 

Fig. I .  Heat flux ~oT'[o at the cold end as a 
function of q for identical values of S/~ 2 = 
|.II m -I and various values of G: I) G = 0.~01 
kg/sec; 2) 0.0002; 3) 0.0005; 4) 0.001; vo = 0. I 
~sec; To = 10~ THo = 8~ Te = 300~ 

N~AT ION 

%(T), the~al conductivity of material, W/m'deg; G, helium flow rate, kg/sec; S, cross- 
sectional area of bridge, m2; ~, perimeter of cross section, m; %, length of part of bridge, 
m; vo, speed of helium at start of first part, ~sec; T, bridge temperature; To and THo, tem- 
peratures of bridge and helium at start of first part, ~ T e, temperature at end of second 

part. 

Dep. 160-79, Nov. 2, 1978. 
Original article submitted Feb. 24, 1978. 
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SCATTERING OF A MULTIMODE WHF FIELD IN A MOIST DIELECTRIC 

Yu. K. Gubiev, A. G. Gasparyants, 
and V. V. Krasnikov 

UDC 664.853.56 

The dissipation of a multimode uhf field in a material is dependent on the structure of 
the field as well as on the physical parameters of the material; the electromagnetic field 
energy in a cavity resonator is the sum of the contributions from the modes. If the uhf 
waves are scattered and absorbed by liquids, including ones enclosed in colloidal or porous 
bodies, then the specific power pv absorbed from each mode is substantially dependent on the 
way in which the water is bound in the material. If we assume that the electric field 
strength is constant in a given microscopic volume, then the total specific power dissipa- 
tion is 

Pt = Z Pv = 0,55. I0- lo t~F~f, Z e; (W/mS), ( l ) 
v v 

where ~t = e~ i s  t he  t o t a l  l o s s  f a c t o r  a t  the  g e n e r a t o r  f r equency  fg and Eef i s  t he  e f f e c -  
v 

tive electric field vector; 

It has been found []] that dielectric losses at high input power levels (over I kW) 
should be determined by methods based on the actual energy absorption in the working frequency 
range, and an example of such a method is the calorimetric one. 

The total specific power in the calorimetric load may be determined by neglectingphase- 
transition effects, and then (I) gives expressions for the effective electric field 

]//" cwowdr 
e~ = o,sb. m-,o 6~ ~d~ (2) 

and the total loss factor 

. Po (___co + O) ff~ d'f/dx 

where 0o and Co are the density and spe_cific heat of the dry material; 0w and cw,density 
and specific heat of distilled water; U, average water content of the material; dt/dT, rate 
of change of the mean temperature of the moist insulator; and d~t/dT, rate of change in the 
mean temperature of distilled water in calorimetric measurement of the specific power. 

Dep. 58-79, Nov. 9, 1978. 
Original article submitted June 27, 1977. 

(3) 

NUMERICAL INTEGRATION IN THE CALCULATION OF ANGULAR 

RADIATION COEFFICIENTS FOR A SYSTEM OF TWO 

PLANE-PARALLEL BODIES 

A. V. Trofimenko and V. F. Prisnyakov UDC 536.33 

An algorithm and formula are given for Calculating these coefficients by contour inte -~ 
gration for two parallel rectangular bodies of areas Ft and F2. The rectangles are oriented 
in the planes with their sides mutually parallel (Fig. I). 

We give the following form [l] to the formula for the angular coefficient for plane- 
parallel surfaces: 

%_~__ 2~F1 , �9 (lnSdx~xx+InSdysdyt). (1) 
G~G= 

We integrate first over contour G= and then over Gz, which gives the coefficient as 
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TABLE 1 

Fig. 

y ,.D /G, x' 

I. Contour integration. 

a d  

-If 
oo 

a d  § 
oo 

Trapez~,,m f~rnula 

SIm~r s farmula 

h=k 
1,0 
0,5 
0,25 

h = k  

1,0 
0,5 
0,25 

(~1-2 
0,83185 
O, 86476 
O. 87327 

I~1-2 
0,85774 
0,87573 
0,87585 

0,04412 
0,01121 
0,00270 

A 
0,01823 
0,00024 
0,00012 

b g 

-- ,I~ln [(Yl- Yl) ~ ~ c~] I /2  dy2dy I _ J'.! 
O0 O0 

a d 
" 

" ~ x - ,  --  P-~FI ln [(x~-- xO~ + g= + c=ll /2 d x ' d x t - -  

oo 
a d  

t I "~ ln [(x" - -  xl  ): "~- c~]l /2 dx~lxl  - . . ln l(x~ - xO~- q- (b - g)~- "~- c*'l . "dx~xl  § 

OO 

b g  

In [ ( x ,  - -  xa) '  -I- b'* -]- c ' l '  I~ dx, dxl + I I In [(Y2 - -  Y,)':" + a-" -i- c*'l I ;2 dy.d.u, 

oo  
b g  bg 

I n l ( Y , - - y D '  +(a--d)~--~-  cZl"Z dy,dyl - t - [ j  ' n l (Yz - -Y , ) ' - ' , -dZ  + cZl'"Z dyzdg,] �9 

oo 

(2) 

The computation of the double integrals on the right in (2) has to be performed numeri- 
cally; the trapezium formula or some other numerical method such as Simpson's formula is 
applied twice to derive standard relations for the integrals over a rectangular region. 

The error in calculating these coefficients in this way has been determined by reference 
to a published formula [1,2]. The exact value has been calculated [2] for two parallel equal 
rectangles for A = a/c = 10, B = b/c = 20, and the result is accurate to the fifth significant 
figure and is ~-2 = 0.87597. Table ; gives results from the trapezium formula and Simpson's 
rule when I O, 20, and 40 segments are used. 

Clearly, numerical integration over the contour provides adequate accuracy in calcula- 
ting the angular coefficients even when only a moderate number of segments is employed. 
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BEHAVIOR OF A GAS BUBBLE PASSING THROUGH A HORIZONTAL 

HOLE AT CONSTANT PRESSURE 

V. V. Sobolev and P. M. Trefilov UDC 532.529 

There are several studies [1-4] on gas bubbles in liquids; two basic equations [4] are 
used in models describing gas bubbles formed in holes: 

( 11 ~ (VS+ vS)+6n~S. (1) v ( p - p ' ) g =  p' + 

' phF [ 3 ] 4.~ 
Px--pg(h--sl--APo---~f(g)'= A +p =~+ ~-d' +-~--- (2) 

The quantity k is a coefficient in the formula that defines the relationship between the gas 
flow rate V and the total pressure difference across the hole [2,4], V = k(AP)X/2; the 
second and fourth terms on the right in (2) describe, respectively, the hydrostatic loss 
and the pressure loss across the hole. The inertia of the liquid arising from the transla- 
tional motion of the bubble and the inertia of the liquid surrounding the bubble arising 
from the radial fluctuations in the cavity are incorporated via the first and second terms, 
respectively, on the right in (2). The last terms on the right in (I) and (2) describe the 
effects of the viscous forces on the formation of the bubble. 

An analytical discussion is presented for the behavior of ~ and S at small times; linear 
perturbation theory is used to show that there exists a critical radius a, for S < a such 
that for ~o = ~(0) > ~, = (o/30g) I/= the bubble grows at the hole if the inertial effects 
are neglected, whereas for ~ < e~ the bubble will pulsate with the natural frequency 

There is a certain increase in ~, on incorporating the inertia. 

Numerical integration of (1) and (2) has been used to examine the behavior; the calcula- 
tions were carried to the instant of detachment, at which ~ = S. The behavior of cavities 
in water, liquid iron, and glycerol was examined. It was found that the detachment time de- 
creases as the height of the liquid h increases, which is due to decrease in the radius of 
the bubble arising from increased hydrostatic pressure, with a corresponding reduction in 
the upthrust. 
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GENERAL TEMPERATURE PATTERN IN A SPACE CONTAINING A 

DESCENDING CAVITY 

M. P. Lenyuk and Z. L. Seredyuk UDC 536.21 

The dynamic temperature distribution is derived for a homogeneous isotropic space con- 
taining the cavity D={(r.O.~).O~r~R,O<~O~Oo, O~<2=} on the assumption that the relaxation 
time z r for the thermal stresses is independent of direction; the distribution is described 
by a scalar quantity T that is the solution to a hyperbolic heat-conduction equation [I]: 
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subject to the initial and boundary conditions 

T It=o ~ ~,( r ,  p., q~), t=o = h (r, ~., q~), 

[_ 0 

r, F, ~), F=cosO (1) 

(2) 

(3) 

and conditions representing uniqueness in ~; here bo = = c_-=; bE = a -I, and h is the relative 
heat-transfer coefficient, while Bk (k = 1, 2) are the q " " connectzvmty coefficients for the 
boundary conditions, and the function is 

( 0) ~ (l, ~, ~)=. I + ~,~r ~ h (t, ~, ~). 

The s o l u t i o n  t o  ( I ) - ( 3 )  i s  c o n s t r u c t e d  by  L a p l a c e  t r a n s f o r m a t i o n  w i t h  r e s p e c t  to  t he  
t i m e  v a r i a b l e  t and Legendre - - -Four i e r  t r a n s f o r m a t i o n  w i t h  r e s p e c t  t o  ~0 and ~, t h e  r e s u l t  
being 

t oo 1 2~ 

Be 0 

+ E (r, p, r ~, n, qo-  =)[b~l,(p,  n, e ) +  bo213 (O, q, =)1 P'accdNP + 
o 

*= I 2 a I  

RP-o 0 

q~ - -  oc) d2 (" L q, o~) d = d q d T ,  (4) 

where E, W6, W r are the principal solutions to the corresponding boundary-value problems. 
The structure of the principal solutions is presented separately for small values of the 

time. 

In particular, it is found that: a) if the functions fj (j = I, 5) are independent of 
the angular coordinate u, then the function Tz(r, t, p) describes the temperature-field 
structure in a space containing a spherical--conical cavity, and b) the function T2 = lim T PO"' -i 
describes the structure of the temperature pattern in a space containing a spherical cavity, 

= l i~_ T describes ordinary parabolic temperature patterns in that and c) the function Tpar 0 

space, and d) the function T b = lim T describes the structure of a pure wave pattern in that 
bt-- 0 

space. 
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AN ASYMPTOTIC SOUJTION TO A NONSTATIONARY 

HEAT-CONDUCTION EQUATION WITH TEMPERATURE-DEPENDENT 

TRANSPORT COEFFICIENTS 

Yu. A. Pshenichnov UDC 5 3 6 . 2 . 0 0 1  

The paper discusses the boundary-value problem 

0T 0 [ ~ . ( T ) 0  ] 
c(r) oFo - Ox - ~  " 

T (0, Fo) ----: T s (Fob T ( 1, Fo) = T e, T ix, 0) = T o, 

(~) 

(2) 

where the specific heat C(T) and the thermal conductivity %(T) are any analytic functions of 
temperature T, Ts(O) = To. 

The variables are replaced in accordance with the following formulas: 

[=x /2V 'F"6 ,  ~1 = ]/'P'~, ~([, ~ l )=T(x ,  Fo) 

to transform the equations for small times to 

[ ( )-g-j (3) 

�9 ~(0, ~1) : T,(,l~), 0(o% q)==To, ~]n=o=To.  ( 4 )  

The right and left sides of (3) and of the boundary conditions (4) are expanded as 
Taylor series in powers of n near n = 0 to get a sequence of linear boundary-value problems 
for which the following special functions are introduced: m~(E), m~=(~), ~x(~), m#a(~), 
~sm(~), ~6~(~) (Fig. I). The asymptotic solution to the initial boundary-value problem of 
(I) and (2) can then be put as 

T (x, Fo) = To Jr" 4T~i, (~) Fo + [32 T~I~ (~) -}- T~ (~'*~x -- C,~,)]Fo'+ 

3 2 , 
-4- {384 T,i s (~) + T,T4 (~.to~s, -- C,o~,t) - - T  2 [~,los.. "7" EtC, (0)~ -F ~,m) -- C~o~ 0 -- }',~,7 -}- Ctt%s]} For -]- .... (5) 

where in(E) ~ i n erfc(~) are integrals of the error function erfc(~) and 

t l ~ c  I , r . =  I a.r.]  (.=1,2 .... ); 
1 d.~. c,~ - n! dr~ It=to . l  a,p n=o k ~ t -  nt dT n T~'T o " 

o ~  == 128 ( i z i  ~ -- 3i~) -F ~ t ,  o ~  =- 4m41i: -- mes, r = 4r176 + m~, 

64 
~6S 

Fig. I. 

O,m 

0,08 

0 
-g~ ,, 

o,5 
I 

o ,m t 

Graphs of m ~ ,  ~ 4 2 ,  0.5"~6,, m~2, ~ 6 s ,  m~7. 
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A comparison of calculations by this method and by finite-difference techniques indi- 
cates that the present method gives a useful formula for the temperature pattern at the ini- 
tial stage of heating or cooling of an unbounded plate with variable thermophysical char- 
acteristics. 

The asymptotic series of (5) can be used in constructing convenient algorithms for 
solving inverse problems in nonlinear heat conduction for small times. 

Dep. 59-79, Aug. 22, 1978. 
Original article submitted Jan. I0, 1978. 

THERMAL CONDUCTIVITY OF THE PERFORATED LEADING EDGE OF 

A GAS-TURBINE BLADE 

E. N. Bogomolov UDC 629.7.03:621.438:536.2 

A one-dimensional approximation gives the temperature averaged over the wall thickness 
of the leading edge of a blade containing several rows of holes, for which purpose the equa- 
tion of heat conduction has been solved for a bent unbounded plate: 

d~Tw Bi z 
dx--Tf z - -  6--~-(Tw--T,,).= O, 

and  t h e  s o l u t i o n  o f  t h i s  f o r  s e c t i o n  j o f  t h e  e d g e  i s  w r i t t e n  a s  

X X 

where 

( )] [ ( ) ]/[ ( ')] 
where T is temperature; x, a coordinate reckoned along the profile on the outer surface; 6, 
wall thickness; R, radius of curvature; a, heat-transfer coefficient; and ~, thermal conduc- 
tivity, while the subscripts are w, wall; h, hot medium (gas); and c, cooling air. 

The constants A and B are determined from the conditions at the boundaries; if it is 
assumed that there is a hole only at the start of each section, then we have 

= , , A ( 1 - ~ - S ~ - - C j - ~ J ) B J - I +  A j  [a2i_l(I -4- SjTCj_I,j) j _ l + b t / _ t  

+ S/ (To. / -  Tab.f) + (1 - ' , -Sj)  ( T o i - i  - -  To / ) l / 2a ib  

B j  = [a t j  ~ 1 ( 1 - -  S j  - -  C j  _ ,  , j)  A j _  1 -i- bzi  - ~ ( t - -  S j  ~- C i _  1 ,i) B j  _ ,  + 

+ S I  (To1 - -  Ta.sl) "!- (1 -- $ i )  ( T o t - I  - -  ToJ)]/2bl~ ' 

~nhere 

( ",' ,- .-) .  
a i j  = exp [ xlj a=i \ 6j - ,  \ 6 j  I /  ; = exp [  X ~ t l /  , b, j  = exp - - - - ~ j  l '  B 'x j  , 

b,, =.p(-x=~ r B~x~I, O,, 
oj / 

is the internal surface of the perforations over a segment H along the length of the blade, 
and Tas is the temperature of the air in the perforations. 

The results for the central part of a symmetrical leading edge with 4 rows of perfora- 
tions are 

2 (7o- -  r~) + {(~s + a A (| + s A + c) s - -  b~ (t + % --  cls] (r , - -Ta,)  
A = B = - - " a ~ ( l + s  a4 c)[a(2-i-s)+bsl+bA ( l + s  A - c ) |  ~ a s + b ( 2 - s ) l  ' 
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where 

o o+ (,-?-,,.o E+I:+, +: +x, ('- " -.-' -- 

[ A~ / ) ; C t' BiziBi s ; 

where  s i s  t h e  v a l u e  o f  Sj f o r  t h e  row o f  p e r f o r a t i o n s  a t  a d i s t a n c e  x s f rom the  c e n t e r  o f  
t h e  e d g e ,  sA i s  t h e  v a l u e  o f  Sj f o r  t h e  row o f  p e r f o r a t i o n s  a t  a d i s t a n c e  Xs + As f rom t h e  

! 

c e n t e r  o f  t h e  edge ,  B iz ,  T~ c o r r e s p o n d  to  t h e  b o u n d a r y  p a r t s  o f  t h e  edge  ( f r e e  f rom p e r f o r a -  
t i o n s ) ,  and Big ,  To c o r r e s p o n d  t o  t h e  i n n e r  p a r t s  o f  t h e  edge  (w i th  p e r f o r a t i o n s ) .  

C a l c u l a t i o n s  f rom t h e s e  f o r m u l a s  a g r e e  s a t i s f a c t o r i l y  w i t h  n u m e r i c a l  d e t e r m i n a t i o n  of  
t he  t e m p e r a t u r e  o f  i s o l a t e d  p o i n t s  made by Monte C a r l o  me thods  f o r  b o u n d a r y  c o n d i t i o n s  of  
t h e  t h i r d  k i n d .  

Dep. 3751-78 ,  Aug. 14, 1978. 
O r i g i n a l  a r t i c l e  s u b m i t t e d  Dec. 20, 1977. 

SOME PROBLEMS IN THERMAL CONDUCTION FOR A WEDGE 

O. B. Fedoseev UDC 517.946:949 

Many engineering processes involve temperature determination on wedges. A Mellin trans- 
formation applied to the Laplace operator in polar coordinates AT = 0 can be used with the 
solution of the resulting differential equation to find the transform of the t~nperature in 
the form T = A sin p~+ B cos p~ the constants A and B are derived from the conditions at 
the faces of the wedge, while the integral in the formula for the inverse transformation is 
derived from the theory of residues and summation of the resulting series, which gives solu- 
tions in certain cases in terms of elementary functions. The symbol ~ =~/(2a) is used, where 

is the angle of the wedge. 

I. If zero temperature is maintained at the face ~ = 0 of the wedge, while ~ = ~ at the 
point r = a corresponds to a localized heat flux Q on the thermally insulated face, then 

~ ) = O l n - -  l +  2 p s i n ~  + p2 
T (r, 2z~ l - - ~ s i n v ~ + p 2  ' 

where O = (r/a)v for r~a; P = (a/r) u for r >a and X is the thermal conductivity. 

2. If the face @ = 0 is thermally insulated, while T = To for r ~a on the face ~= a, 

and T = 0 for r > a, then we have 

To _ To arctg 2(rla)Vc~ for r < a ;  
T ( r , ~ )  = a 1 - - ( r / a )  2v 

. 

r >a, 

To 2 ( a / r )  v cos vq~ 
- -  arctg T(r ,  q~)=: 1t l - - ( a / r )  2v for r > a .  

If T = 0 on the face ~ = O, while T = To for r ~a on the face @ = a, and T = 0 for 

T(r,  ~ ) =  q> To- -  To_arctg sin2vq~ 
r ~t (a/r)2V--I - cos 2vtp for r ~ a; 

T(r,  q>) = To arctg s in2v~ 
---~ (r/a)2V+cos 2vq~ for r :> a. 

A piecewise-constant flux on one of the faces has also been considered. 

These solutions can be used in isolation or combined in engineering calculations. 

Dep. 60-79, Oct. 16, ]978. 
Original article submitted June 22, ]977. 
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SOLUTION OF A DEGENERATE SINGLE-PHASE STEFAN'S PROBLEM 

FOR BOUNDARY CONDITIONS OF THE FIRST KIND AT THE 

BOUNDARY OF A HALF PLANE 

A. M. Tsybin UDC 536.2.01 

Let @(T) be  the temperature of the medium, which satisfies the conditions 

- -  M < (p (x) < O, where M = const > O, ( 1 ) 

-4-** M 
l.f < ,-P-T' >0, (2) 

0 

in which case the path followed b y  the zero isotherm ~(T) can be defined by solving a non- 
linear integral equation derived by Grinberg and Chekmareva. It is assumed that ~(T) satis- 
fies (I) and (2) and can be represented as a power series 

qD (z) = X ?"'~" ?o < O. (3)  
r=O 

The unknown function ~ (z) is expanded as 

** zm+l 
~2n ( z ) = 2 n  X a ~ ) - - ( n = =  I, 2 . . . .  ), O.-~z'~'c, ( 4 )  

m +  I m=O 

to derive recurrence relations for the coefficients a (n) where ais the thermal diffusivity 
and B is the result from dividing the enthalpy of themphase transition by the thermal con- 
ductivity of the material in the frozen zone: 

[ ~ 2t--2(a(oll)i--I(i+l)! 1 --'~t (5)  
a~ t) 1+ a i - - l (2 i_ l ) !  "- B 

i = 2  

a ( k + , ) _  2~-,(a(ol) 2) a~ l~(k :  l, 2, . (6)  h+~ - -  ) h ( k +  . .), 

a~l)[rl -a- 1 ~ 2i--r(a(ol))i--r{i--' ') . . . _~_ 

' r $ 1  a ' - - r[2( i - - r )~- l ] !  i=r+ 1 
i - -r  

, - I  a~:~ n | i! 
+ + Z 

n = l  i ~ r + 2  /=1  

i - i - z  aIPn-i / ~'r r! (r 2, 3, .), (7) 
x E . . . . . . .  i - / + l - n J  B 

n = i - -  r - - j +  I 

r - - I  a~l_.) i 

a(2lr.+l = a( I )a ( l~ ( r+2) - ! -2Xo  �9 a ~ l ) ~  " - - - - - +  r -- i ( r = 2 ,  3 . . . .  ), (8 )  
i= 1 

ar+ h_ ._ ~(~+1) 2k(a~l) )h r+h-2 111 , I 

k "-[-k--i--I  a (1) ( r :=2 ,  3, ) 
+ X 2i(a~~ ~;  aiOt_i+l) r§  " '"  . (9) 

r+k + l - - i - - j  k = 2 ,  3, . 
i=2 i=k-i+ t 

Examples are considered of the paths of the zero isotherm for the cases ~(~) = -40 exp 
(--T), "C; ~(x) = --i0[i -- exp(--T)], ~ tables and graphs are presented. The temperature 

pattern in the frozen zone is then determined. 

Dep. 61-79, Oct. 24, 1978. 
Original article submitted June 3, 1977. 
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HEAT TRANSFER AT A RAPIDLY MOVING BOUNDED CONTACT 

A. P. Klenov, V. M. Makharinskii, 
and V. F. Volkodavov 

UDC 536.241:531.44 

Nonstationary heat transfer is considered for bodies whose rectangular ideal contact 
generates heat of friction; rapid motion at a constant speed is envizaged. Various assump- 
tions are made to reduce the three-dimensional treatment to a one-dimensional model. Laplace 
and Fourier integral transforms in a generalized-function space are employed. Approximate 
formulas are derived for the contact temperature or the heat fluxes in terms of the values 
averaged over the contact area; a comparison is made with analog simulation data and exis- 
ting particular analytical solutions due to Jager and Lykov. 

The problems considered here are related to many technical applications; the expres- 
sions fo E the contact temperature and heat fluxes are extremely general for large values of 
the Peclet number and serve to define solutions to many heat-transfer problems for bodies 
with contacts of rectangular form. 

Dep. 155-79, Nov. 2, ;978. 
Original article submitted Oct. 5, 1977. 
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